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Abstract

Developmental psychology presents us with a puzzle: though
children are remarkably apt at planning their actions, they suf-
fer from surprising yet consistent shortcomings. We argue that
these patterns of triumph and failure can be broadly captured
by the framework of task and motion planning, where plans
are hybrid entities consisting of both a structured, symbolic
skeleton and a continuous, low-level trajectory. As a proof of
concept, we model two case studies from the tool use literature
and show how their results can be understood by the interac-
tion of symbolic and continuous plans.
Keywords: Planning; Tool use; Developmental Psychology;
Action

Introduction
When a child is presented with a new problem to solve, where
might she begin? We know a great deal about the content of
children’s intuitive theories about the world: from the earli-
est ages, they represent objects as discrete entities that cannot
wink in and out of existence, and their physical understanding
rapidly develops over the first two years of life. Simultane-
ously, we know that children are developing their motor ca-
pabilities over this period of time, including learning to walk,
grasp, and perform simple tool manipulations. However, de-
spite children’s success in learning such a wide variety of
skills, they show unexpected deficits in their ability to plan
their actions. Most notably, children have consistently failed
at a variety of tool use tasks, from bending a pipe cleaner into
a hook shape to retrieve a toy from a tube, to stitching to-
gether two old plans to solve a new task. How is it possible
that children can have rich intuitive physical theories, while
not always being able to use these theories effectively to plan?

In this paper, we propose that an approach to the robotic
planning in AI known as task and motion planning (Kaelbling
& Lozano-Pérez, 2010) presents a grounded computational
framework that can explain both childrens’ striking successes
and their striking shortcomings. In task and motion planning,
simulations are guided by a symbolic search procedure that
abstracts over continuous states. We argue that this view hints
at new ways of looking at the development of planning: be-
yond just having more powerful simulators of the physical
world, children might get better at planning in two distinct
ways: by (a) creating better abstractions and (b) discovering
better symbolic search procedures.

As a proof of concept for how task and motion planning
can be used to explain the successes and failures of children’s

planning, we present two case studies of tool use from the
developmental psychology literature that we model using this
approach, and show that we can broadly capture developmen-
tal milestones.

Task and motion planning
Discrete planners, such as the General Problem Solver
(Newell & Simon, 1961) or STRIPS (Fikes & Nilsson, 1971),
are powerful because they can abstract over many possible
states of the world. A simple symbolic expression like “pick
up the rake” encapsulates many different states of an environ-
ment, and dramatically constrains the space of possible plans
an agent has to consider. But this abstraction is also their
weakness: a symbolic planner by itself cannot express when
it is necessary to use a rake to reach an object, or how to use
the rake. One might think of trying to incorporate information
like this into a discrete planner, by adding expressions such
as “if the object can’t be reached, then use the rake”. But this
is sweeping the problem under the rug: to verify whether the
object can or cannot be reached, one needs to grapple with the
continuous geometric state of the world: where the object is
placed, the shape of the surface it is on, whether there are ob-
stacles preventing a reach, etc—one lesson learned from clas-
sical AI is that discrete planning problems quickly become
intractable when trying to grapple with such information.

Continuous planners, on the other hand, deal beautifully
with geometry, and can be used to solve many challenging
motion planning tasks. They have no trouble generating con-
tinuous trajectories for grasping a rake, or for pulling an ob-
ject with it; they are, however, incapable of deciding to use
a rake in the first place, and unlikely to stumble open such a
plan solely by moving through a sea of continuous trajecto-
ries.

The complementary strengths of discrete and continuous
planners gave birth to task and motion planning (Kaelbling
& Lozano-Pérez, 2010; Dantam et al., n.d.; Toussaint et al.,
2018; Garrett et al., 2018), an approach where a robot makes
a plan by first considering a discrete sequence of symbolic ac-
tions (a task plan) and then checking whether that leads to a
feasible continuous trajectory (a motion plan). This approach
has enjoyed great success in the robotics community, deliver-
ing impressive results on challenging, human-like sequential
manipulation and tool use tasks.

This is distinct from alternative methods of planning: for



example, adult decision making is primarily modeled using
reinforcement learning, which tries to find ways of interact-
ing with the world that lead to high reward (Daw et al., 2006;
Niv, 2009). Reinforcement learning has been effective in ex-
plaining how adults approach tasks where they have no priors
for how to interact with the scene, but cannot explain the flex-
ibility people display when transferring knowledge from one
task to another. If children are to become successful adult
planners, they must learn how to plan in ways that general-
ize better than having stereotyped policies for each task they
encounter.

Simply having a good model of the world is also not
enough for planning. Naive approaches to model-based
search would follow a “forward sampling” procedure in the
space of low level motor actions (Betts, 1998). But searching
for a plan in this space to accomplish any realistic goal that
a child might have would be impossible – there would be far
too many actions to consider. Instead, task and motion plan-
ning suggests searching through a more abstract, symbolic
task space, which constrains the motor plans devised to reach
a particular goal. If that is the case, then we should expect the
development of planning in children to be driven not only by
their proficiency in simulating and executing any one given
course of action, but also by their proficiency in searching
this symbolic space for relevant actions in the first place.

Planning Methodology
We operationalize task and motion planning by adapting the
model introduced by Toussaint et al. (2018). Our goal is
to make plans that manipulate many different objects in se-
quence and create and destroy multiple contacts: we do that
by first sketching out how we want the geometric relation-
ships between objects in our environment to evolve through
time, and then attempting to fill that sketch with a trajectory
that satisfies those relationships—the former is our task plan,
the latter, our motion plan.

More concretely, given a set of geometric predicates a, we
perform a breadth-first search through sequences of predi-
cates a1, . . . ,aK , and for each sequence we attempt to find
a trajectory x0:T that satisfies the constraints induced by those
predicates at each timestep:

find x0:T

s.t. x0 = s0, cgoal(xT ) = 0

∀t ∈ [0,T ] : cpath(xt ,ak(t)) = 0,

where s0 is the initial state, cgoal is the set of constraints
that specify the goal, and cpath(xt ,a) is the set of constraints
encoded by a applied to the trajectory at time t.

The geometric constraints we use in this paper are meant
to encode relationships between objects that are relevant to
solving the task at hand, such as grasping a spoon, pulling
an object with a hook, pushing it with a rod. Most task and
motion planning approaches are silent on how an agent might

learn about such constraints in the first place, and we shall not
break with tradition here, focusing instead on how a given set
of constraints can capture certain patterns of successes and
failures in children’s planning behavior.

Case Studies
We selected two studies from the literature on tool use in de-
velopmental psychology and recreated them in robotics sim-
ulations in order to have our model attempt to solve the same
planning problems as the children in these studies did. The
studies were picked for their striking patterns of failures and
successes—in what follows, we summarize their results and
present our versions of the tasks.

Case Study 1: Spoon grip
McCarty et al. (1999) introduce a task where a child between
9 and 19 months of age is presented with a spoon whose bowl
is loaded with food, and then attempts to bring the food into
their mouth by grasping and maneuvering the spoon. The
child sits on their parent’s lap, and the spoon placed upon a
two-column support that crucially allows for it to be grasped
from either above or below.

The design of the study hinges upon the fact that children
of this age already have a dominant hand and exhibit a pref-
erence for using it. Trials were divided into easy and difficult:
easy trials are the ones where the handle end of the spoon
points to the same side as the child’s dominant hand, difficult
trials are the ones where it points to the opposite side. The
reason for this distinction is that children prefer to grasp the
spoon from above, and when doing that they’ll be left with
an adequate grip with their dominant hand on the easy trials,
with their thumb pointing towards the bowl-end of the spoon,
and an awkward grasp on the difficult trials, which makes it
harder to get the food to their mouths (see the top part of fig-
ure 1 for an example of an awkward grasp on a difficult trial.)

There was a clear separation between how children differ-
ent in age groups solved the task on difficult trials. 9-month
olds mostly use the awkward grip, and placed the food into
their mouths by the procedure shown in the top part of fig-
ure 1. 14-month olds also mostly used the awkward grip,
but corrected it halfway through the trajectory by using many
different strategies, including setting the spoon on the table in
order to change the way they were gripping it. 19-month olds
mostly chose the efficient grasp from the start.

Note that these differences cannot be due to how far ahead
children are planning, as all of them grasp the spoon with
the intention of ending the trajectory by placing it inside their
mouths. The difference could, however, be due to the level of
detail they are using to fill in this future trajectory, or the kind
of abstraction they are deploying to represent it. Under that
hypothesis, task and motion planning is a good candidate to
model this phenomenon.

Experiment
We propose to model the developmental trajectory in the
spoon task observed by McCarty et al. (1999) as a refinement



of the kinds of abstractions children are using to plan for that
task. More specifically, we propose that (a) 9-month olds’
failures can be modelled by planning with a very coarse repre-
sentation of the geometric relations which make for an effec-
tive grasp of the spoon (b) 19-month olds’ successes can be
modelled by a similar planning procedure, but with a more re-
fined representation of what is required for an effective grasp,
and (c) 14-month olds’ mixed behavior can be modelled by
plans that begin by using coarse heuristics similar to 9-month
olds’ and then replan with a more fine-grained model akin to
19-month olds’.

Environment: our version of the spoon environment can
be seen in figure 1. We tried to maintain the core characteris-
tics of the task in McCarty et al. (1999). The robot serves as
a model for the child’s dominant hand, as children in the task
were for the most part insistent on only using that hand. A
floating goal in red next to the robot stands for the mouth
where the correct end of the spoon must be placed. The
spoon, in its turn, rests in front of the robot upon a two-
column support similar to the one in the original task: cru-
cially, the spoon’s bowl-end points away from the mouth, as
in the difficult trials.

Task Predicates Used: only one task predicate was used
per condition: the geometric constraint representing the grip-
per grasping the spoon. For the 9-month old model, this pred-
icate depended only on the orientation of the gripper, so that
the model would grasp the spoon the same way independent
of how it was oriented. For the 19-month old model, the
predicate enforced a particular alignment between the orien-
tations of the spoon and of the gripper, akin to having one’s
thumb pointing towards the bowl-end of the spoon for a hu-
man hand. The 14-month old model was a mix of the two: in
order to model the mid-trajectory replanning behavior seen
in children this age, we took one of the intermediate states
from the 9-month old model’s trajectory and planned with the
19-month model starting from that state. The planners’ tree
search can also remove geometric predicates from previous
timesteps—here this results in the gripper setting the spoon
down and breaking the grasp like in figure 2.

Results
The 9-month old model’s trajectory is shown in the bottom
part of figure 1. Here, the naive geometric model of its grasp
makes the robot, after the simple grasp on the second frame,
have to settle for an awkward grasp to bring the spoon’s bowl-
end to its goal position.

The 14-month old model’s trajectory can be seen in figure
2. Here, when asked to replan from a point in the middle
of the 9-month old model’s trajectory (frame 3), the model
comes up with a solution for creating an efficient grip that
involves setting the spoon down and letting go of it in order
to change its grasp before bringing it to the destination.

The 19-month old model’s trajectory, in contrast to the 9-
month old’s, goes for the grasp that would achieve the same
relative orientation between gripper and spoon as an overhead
grip in the easy condition—this results, in our model of the

difficult condition, by it starting by grasping the spoon from
below, which lands it in a comfortable grasp at the end of the
trajectory, analogous to the 14-month old model.

Discussion
Our experiments offer an interpretation of the results in Mc-
Carty et al. (1999) where children learn more flexible abstrac-
tions for planning as they get older. Under that view, rather
than just having a more powerful or more accurate simula-
tor for guiding their actions, children would also develop by
learning what kinds of abstractions over continuous states are
safe to use in what situations, and —from their experience
with spoons, 9-month olds would have come up with a rule
that doesn’t generalize well to the difficult trials in the study,
whereas 19-month olds have learned a more general rule and
also know when to deploy it.

The case of the 14-month olds is more interesting: though
we recapitulated their behavior by forcing the model to re-
plan, it’s not clear why the children would choose the bad
grasp and then switch mid-trajectory. If they’re capable of
understanding the utility of the correct grasp, why don’t they
deploy it from the start? One possibility is that, since the over-
head grasp with the dominant hand is a simpler representation
that is good enough for most situations they encounter, they
plan with it by default, and that the meta-control that will al-
low them to correctly arbitrate between these representations
won’t develop until they get older.

Case Study 2: Sequential tool use
Metevier (2006) presented 36-month with two initial tasks,
counterbalanced for order: one where they could retrieve an
out of reach toy by pulling it with a rake, and another where
they could retrieve a toy within a tube by pushing it out us-
ing a rod. These tasks were followed by a combination task,
where once again the toy was inside a tube and could be
pushed out with a rod, but now the rod was out of reach, and
it was necessary for the child to first use the rake to retrieve
the rod.

Though all children succeeded in both the rake and the rod
task, only four out of sixteen of them managed to solve the
combination task without assistance. After being given verbal
hints to the solution, however—the strongest of which is “You
can use this (the experimenter taps the head of the rake) to get
this (tapping the rod) and then get the toy.”—most children
succeeded at the task.

Metevier (2006) writes of this pattern of failures: “Regard-
less of success rate, all of the children tested reached for the
rod, asked for the rod, or stated that they needed the rod to
solve the task. This suggests that the children did not initially
understand that they needed to perform an intermediate step
in the task that did not directly relate to getting the toy.” It re-
mains unclear, however, why that is: we know that children as
young as 12-months old are apt at chaining actions together to
achieve a goal (Sommerville & Woodward, 2005)—indeed,
the very act of reaching for a tool like the children did in the



Figure 1: (a) a child performing the spoon task in study McCarty et al. (1999)—by choosing to grasp the spoon from above
using their preferred hand, they finish the trajectory with an awkward grip (source: Keen et al. (2014).) (b) task and motion
planning robot using coarse geometric primitives executing a similar grip in our version of the spoon task.

rake and the rod task is an example of performing an interme-
diate step not directly related to getting the toy; so it seems
implausible that that in itself was the reason they struggled
with the task.

Experiment
In the experiment that follows, we model the two initial tasks
and the combination task using task and motion planning. We
also model the verbal hint in the combination task as an alter-
native condition in which our model is provided with the cor-
rect task-level plan for the task but must discover the motion-
level plan by itself.

Environment: three environments were part of this case
study. The first environment is a model of the rod tasks, con-
taining as objects a ball, a rod, and a tube; the second is a
model of the rake task, containing a hook and a ball; the third
one was the combination task, with a ball, a rod, a hook and a
pipe (the third environment can be seen in figure 3). In all of
the tasks, the goal is to get the blue ball, used as a stand-in for
the toy in the original tasks, to a goal position, represented in
red.

Task predicates used: for our task and motion planning
model, we used a slide predicate, that the gripper, hook, and
rod could apply to any of the objects (except for the pipe,
which was fixed). The gripper was also capable of grasp-
ing both the hook and the stick, and any geometric constraint
created during a plan could be destroyed—this happens for

instance when setting down an object. For every condition,
we restricted the planner’s task predicates to only those rele-
vant to the environment at hand. For any predicate and pair
of objects, a pre-specified pair of points in their surface was
used as the reference for the kinematic constraint.

Results
In table 1 we show the number of nodes searched and the CPU
time elapsed until a solution was found in all four conditions,

In both the hook task and the rod task, our model searches
through 3 nodes before finding a solution, which takes only a
couple of seconds—after considering only grasping the tool,
which doesn’t help with the task at hand, or sliding the ball
with the gripper, which is impossible due to it being out of
reach, the model settles in both cases for using the tool to
slide the ball.

The combination task is dramatically more difficult, tak-
ing an order of magnitude more time to solve and search-
ing through two orders of magnitude more nodes. This hap-
pens because the string of actions required for the final plan
is extremely long: picking up the hook, pulling the rod, re-
leasing the rod, setting down the hook, picking up the rod,
and finally pushing the ball: see figure 3 for the final trajec-
tory found by our planner. When doing symbolic search, the
number of nodes increases exponentially with the depth of the
tree, which is the reason for the more than a hundred nodes
searched—the corresponding increase in time is less dramatic



Figure 2: Task and motion planning model of 14-month olds in the spoon task.

in our model because the brunt of the search time is spent on a
few nodes that cannot be quickly discarded by the continuous
solver.

On the other hand, if the model receives a hint in the form
of the ground truth task plan to be transformed into a mo-
tion plan, the problem of doing task-level search is removed
and the plan is found as efficiently as those in the single tool
conditions.

Table 1: Number of task nodes searched and duration of plan-
ning in CPU time for the four conditions in case study 2.

Task nodes searched CPU time (s)
Pull with hook 3 1.67
Push with rod 3 3.31
Combination 105 27.98
Combination (with hint) 1 1.77

Discussion
These experiments offer a simple interpretation of the results
found by Metevier (2006): even though children are likely
to reason symbolically about tool-use and use that reasoning
to successfully guide their low-level plans when retrieving a
toy with a rake or a rod, the apparent simplicity of a plan
that requires chaining these two actions together can actually

render the problem intractable for some types of planners by
blowing up the search space.

Under this view, the problem is not with performing actions
not directly related to the goal, which children successfully
do in this and other tasks, but in discovering procedures to
more efficiently navigate such large search spaces. The blow-
up we observe in the combination task stems mostly from
the choice of primitives and the naive breadth-first search
procedure for the task-level plan—it is likely that, as chil-
dren grow older, they develop sophisticated abstractions and
heuristics for planning, avoiding such tractability problems.
For instance, one could imagine that after solving the first
two tasks, a child could learn to represent each of them as a
single, more abstract predicate—in that case, the combination
task would be significantly easier, requiring only two rather
than six predicates to solve.

A crucial aspect of the original study is the fact that most
children succeeded at the task after receiving a verbal hint
describing both the correct sequence of tools to use and on
which objects. This is important because it squarely places
the 3-year olds’ initial failure at this task as a problem of
search: they are perfectly able to represent and execute the
solution after being directed towards it, but just fail to find
that solution on their own. One of the strengths of task and
motion planning is providing an explanation for how such lin-
guistic input might help one search through a space of con-



Figure 3: Discovered solution the combination task in case study 2. The goal is to get the blue ball to the position in red.

tinuous motor actions—most approaches to planning operate
solely in the latter domain and would be unable to make use
of such input.

We want to stress that this line of reasoning is similar in
spirit to how the result was interpreted by the original authors:
Keen (2011) writes “It is not clear how the children used this
hint to guide their action, but one possibility is they visualized
themselves making the sequence of actions. If so, they could
subsequently carry out these actions in the order indicated
and achieve success.” We see the contribution of our work as
formalizing what it means for a simulation to be guided by a
symbolic representation of a plan.
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