
Inference and Planning with Virtual and Physical
Constraints for Object Manipulation

João Loula
Department of Brain and Computer Sciences

Massachusetts Institute of Technology United States
jloula@mit.edu

Kelsey R. Allen
Department of Brain and Computer Sciences

Massachusetts Institute of Technology United States
krallen@mit.edu

Alberto Rodriguez
Department of Mechanical Engineering

MIT United States
albertor@mit.edu

Joshua B. Tenenbaum
Department of Brain and Computer Sciences

MIT United States
jbt@mit.edu

Nima Fazeli
Department of Mechanical Engineering
University of Michigan United States

nfz@umich.edu

Abstract: Object manipulation is a challenging long-horizon planning task. To1

address this challenge, tasks are typically decomposed into a sequence of phases2

and primitives. We propose a framework for manipulation that decomposes tasks3

into kinematic graphs comprised of virtual and physical kinematic constraints. To4

this end, we first infer a set of producible constraints during an exploration phase.5

Next, we demonstrate an efficient planning procedure that uses kinematic graphs6

built from these constraints for object manipulation. We conclude by showing7

generalization across tool-object interactions by virtue of object-centric encoding8

of the constraints.9

Keywords: Planning, Manipulation, Representation Learning10

1 Introduction11

Making and breaking contact is characteristic of sequential manipulation tasks: the resulting dis-12

continuous mechanics pose a challenge for planning. This challenge can be effectively addressed by13

decomposing the problem into a sequence of phases, each represented by a hand-engineered abstrac-14

tion [1–7]. How these abstractions generalize to novel scenarios, however, is unclear, as the original15

problem decomposition could no longer be relevant. How can we represent planning abstractions16

such that they’re general enough to tackle new problems, but constrained enough to allow efficient17

learning?18

Consider the task of pushing a block to the goal configuration depicted in Figure 1 (third pane).19

One way to solve this task is to use a model of the dynamics of pushing, either analytical (e.g. [8])20

or learned (e.g. [9]): in either case the models are complex, and planning with them is difficult.21

Alternatively, one might reason that within the set of all pushes, a few of them reliably create simple22

motions: the block moves in a straight line if it is pushed straight and close to the center, and it23

rotates if it is pushed close to the edge. Research in cognitive science tells us people systematically24

avoid reasoning about Newtonian mechanics in favor of such simple kinematic primitives [10–12]:25

these simplifications might be key for fast learning and generalizable planning.26

We present a modelling and planning framework that learns kinematic graphs comprised of virtual27

and physical constraints, and uses them to decompose planning problems. We show that the model28

can generate the data it needs through simple grid-search policies for interacting with objects (Sec-29

tion 2.1), that it can repurpose efficient algorithms originally used for inferring joints in multi-link30
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Figure 1: Exploration: the robot interacts with the block by pushing it along varying locations and
directions, in a grid search fashion. Inference: the robot infers that some pushes move the block as
though it were constrained by a virtual prismatic or revolute joint. Planning: The goal of the robot
is to push the block to a desired configuration. The robot plans to achieve its goal by sequencing the
learned constrained motions: first sliding, then rotating.

objects [13–15] to solve its learning problem (Section 2.2), and that the learned representations can31

be directly plugged into standard constraint-based task and motion planning [6] (Section 2.3).32

We demonstrate the efficacy and flexibility of this approach for several challenging object manipula-33

tion tasks involving tool use (Section 3, see Figure 3 for the tasks considered). Crucially, though our34

model gets experience with the dynamics of tools during its exploration phase, it never sees tools35

being used on other objects—instead leveraging object-centric representations to discover these be-36

haviors at test time. We conclude by reviewing related work and discussing limitations and future37

directions.38

2 Framework39

Our approach to object manipulation has three components: exploration, inference, and planning.40

During exploration, the robot attempts interactions with objects in the scene one at a time—such as41

poking a block or grasping a stick. During inference, it uses data from these interactions to discover42

realizable affordances, composed of virtual and physical constraints. Finally, during planning, the43

robot uses these constraints to search for sequences of actions to achieve desired goals. We detail44

these components in the following subsections.45

2.1 Exploration46

In the exploration phase the robot interacts with one object at a time, performing actions in order47

to discover which of these actions generate behavior that is well-described by simple kinematic48

abstractions. Actions consist of a position on the object where the robot will make contact as well a49

force to be applied at that contact:50

a = (p,f) (1)

The robot searches over actions using an exploration policy—in this paper, we use a fixed grid51

search, but the policy could also be based on random search or active learning (e.g. [16]), for52

instance.53

We are interested in tracking the trajectories that result, in particular the transform Tro relating a54

fixed frame on the robot to a fixed frame on the target object, and the transform Tow relating a fixed55

frame on the object to a fixed world frame; we call that trajectory D:56

D =
{
Dt
}
=
{
Tt

ro,T
t
ow

}
(2)
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2.2 Constraint Inference57

In the inference phase, the robot takes the trajectories {Dt} from the exploration trials and attempts58

to model both the geometric relationship between robot and object Tt
ro and that between object and59

environment Tt
ow as stemming from simple kinematic constraints: these constraints will represent60

actions the robot can take and motions that result, respectively. Well call this representation that61

combines action and motion an affordance: the main insight for inference is that affordances can be62

inferred as the most likely kinematic graph having the robot r, the object o, and the environment w as63

nodes (see [13]). We note that this is a significant departure from the original use case of kinematic64

graph inference, which is to infer physical joints in multi-link objects, like a drawer moving on its65

slides, or a door rotating around its hinge. Here, we’re using these algorithms to infer virtual joints:66

motion that is well-described by these constraints, even though there are no external mechanisms67

enforcing them.68

LetA denote a possible kinematic graph with r, o, and w as vertices. To infer which affordance best69

describes a trajectory D, we compute the posterior distribution over such graphs A conditioned on70

D by applying Bayes rule:71

p(A|D) ∝ p(D|A)p(A) (3)

Note that the kinematic relationship between the three bodies is fully specified by giving two vertices72

(since the third constraint can be derived by composing the other two.)—as such, we represent the73

kinematic graph in the exploration trial by one edge Er,o between the robot and object nodes and74

one edge Eo,w between object and environment: these correspond respectively to the affordance75

action and motion. We represent the constraint type of these two edges as Cg,o and Co,w, and76

they can be prismatic, revolute, fixed, or free. Each of these constraint types has its own set of77

parameters, such as the axis for a prismatic constraint, or the relative position for a fixed constraint.78

We’ll represent the parameters for the action and motion constraints as θr,o and θo,w, respectively79

(following Barragän et al. [14]). We can then compute the most likely graph for a given exploration80

trial as:81

Â = argmax
A

p(D|A)

= argmax
A

p(Tr,o|Cr,o,θr,o)p(To,w|Co,w,θo,w) (4)

The last equality holds because a kinematic tree’s edges are independent of each other. Sturm82

et al. [13] note that this allows for an efficient procedure for inferring the kinematic graph: first we83

compute the most likely type of constraint and parameters (Ci,j ,θi,j) for both pairs of bodies, and84

those will then constitute the most likely set of edges E composing the tree. The best constraint85

type and set of parameters to describe the interaction between two bodies i and j is given by (we86

omit the body indices for notation clarity):87

(Ĉ, θ̂) = argmax
C,θ

p(C,θ|T) (5)

To solve equation 5, we consider each constraint type and compute its most likely parameters:88

θ̂C = argmax
θ

p(θ|T,C) ∝ p(T|C,θ)p(θ|C) (6)

where p(θ|C) is a prior over a joint’s parameters, and p(T|θ,C) is the likelihood of a sequence of89

relative transforms given a parameterized constraint (we discuss the constraint models C in more90

detail in the appendix). Next, we use the computed most likely parameters from equation 6 to91

estimate the maximum a posteriori (MAP) of the constraint type:92

Ĉ = argmax
C

p(Ĉ|T, θ̂C) (7)

The MAP constraint types inferred from equation 7 are then plugged into equation 4 to compute the93

graph likelihood. For planning, we keep only the affordances associated with the highest-likelihood94

graphs across exploration trials for each object.95

A crucial advantage of the affordance representation is that it can easily be made agnostic to the96

effector used. Consider again the example of pushing a block along its center of mass: the affor-97

dance here consists of a constraint Co,w describing the robot’s sliding motion and a constraint Cr,o98
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describing the action as a required geometric relationship between a fixed frame on the robot and a99

fixed frame on the object, (for instance, between the tip of the robot’s finger and the block’s center100

of mass). But Cr,o could also describe the relationship between e.g. a stick and the block, provided101

one can define a frame on the stick that has similar geometric properties to the tip of the robot’s102

finger. In this work, we suppose that such a correspondence is known, and show that that allows103

us to enact learned affordances with tools without previous experience using tools on objects (more104

details in Section 3). In Section 5 we discuss this assumption and the possibility of discovering such105

correspondences automatically by analyzing geometries and contact formations.106

2.3 Planning107

In planning, we are given an environment and an initial state and asked to find a feasible trajectory108

that satisfies some goal. We solve this problem using the standard framework of constraint-based109

task and motion planning [6], where a high-level search over sequences of modes defines the con-110

straints that will apply at each segment of the trajectory, and a low-level solver attempts to find a111

feasible trajectory given those constraints. When doing constraint-based task and motion planning112

with our model, modes are represented as kinematic graphs detailing the geometric relationships113

that hold between objects in the scene—these graphs are obtained by composing the affordances we114

learned for each object in the previous section: we describe the high-level search procedure using115

these graphs in Section 2.3.1. Our approach to the low-level optimization is standard, and we de-116

scribe it in Section 2.3.2. See Figure 2 for an illustration of the found high-level graph sequence and117

low-level trajectory in a simple block pushing task.118

2.3.1 High-level search119

The high-level planning procedure does breadth-first search over kinematic graph sequences to be120

tested by the continuous solver. The initial kinematic graph G0 is always taken to be such that the121

movement of actuated objects is unconstrained (there is a free constraint edge between them and the122

environment), and unactuated objects are taken to be at rest in their initial positions (there is a fixed123

constraint edge between them and the environment.) The breadth-first search expansion starts from124

the root node G0 and proceeds by expanding leaf nodes in the tree by either adding or removing a125

learned affordance using some effector: these two transformations translate to making and breaking126

contact. Adding an affordance to a graph has two consequences:127

• An edge is created between the effector and the target object: that edge’s type is given by128

the affordance’s action constraint.129

• The edge between the target object and the environment has its type changed to that of the130

affordance’s motion constraint.131

For example, in Figure 2, G0 is transformed by adding an affordance which has a fixed constraint132

between the gripper and the block and a prismatic constraint between the block and the environment133

(represented here as the table.) The fixed constraint is added to the graph, whereas the prismatic134

constraint replaces the constraint that previously existed between the block and the table.135

Removing an affordance, on the other hand, removes the constraint between effector and object and136

restores the object’s original constraint to the environment.137

Given that the model can either add or remove affordances and that any object other than the target138

could potentially serve as the effector for an affordance, a simple upper bound on the search tree’s139

branching factor is 2 * number of affordances * (number of objects - 1). In practice the branching140

factor is a lot lower as affordances can only be removed if they are present in the previous graph.141

The search terminates when a sequence of graphs is found that allows for a trajectory satisfying the142

goal specification. We present an overview of the high-level planner in Algorithm 1:143

See figure 2 for an example of a graph sequence found to solve a task. In this case, the initial144

graph G0 was modified by applying the block’s prismatic pushing affordance using the gripper as145

the effector: this created a fixed constraint between gripper and block and changed the constraint146

between the block and the table to a prismatic one, resulting in graphG1. The graph sequence (G0,147

G1) allowed a feasible trajectory that reached the goal (placing the block in the configuration in red148

in Figure 2, and so the search ended.149
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Algorithm 1: High-level Planner
Data: G0, goal, affordances
Result: a graph sequence with a feasible trajectory to the goal
queue⇐ (G0)
while queue is not empty do

graphSeq⇐ queue.pop()
if feasible (graphSeq, goal) then

return graphSeq
for affordance ∈ affordances do

for effector ∈ objects \ affordance.target object do
G⇐ expand(graphSeq[−1], affordance, effector)
queue.push(graphSeq + (G))

Figure 2: Task A: Below: the robot pushes the block along a virtual sliding constraint to the goal
configuration. Above: the sequence of graphs constituting the high-level plan for this trajectory:
each node represents an object (Gripper, Stick, Block, and Table) and each edge is a virtual or
physical constraint between them (Fixed or Prismatic).

2.3.2 Low-level solver150

The high-level search procedure calls the method feasible, which verifies that condition 2 holds—151

that is, that there exists a trajectory that can satisfy the mode constraints given by the sequence of152

graphs, and that the goal is attainable.153

We solve this problem in two steps. First, we check only for task-space feasibility, by ignor-154

ing all forward kinematic constraints. This is a computationally cheap procedure, as all the con-155

straints given by the kinematic graph’s edges are simple geometric transformations written as matrix156

multiplications—this allows us to quickly rule out plans that are infeasible or that cannot possibly157

achieve the goal. If the task-space problem is feasible, we check the full joint-space problem—the158

procedure is described in detail in the appendix. We use the SQP solver SNOPT [17] for solving the159

resulting optimization problems.160

3 Experiments161

Exploration: The model has exploration trials with a block, a stick, and a hook. We describe the162

grid-search policy for each of these three objects in detail in the appendix. For both the stick and163

the hook, the robot is made to grasp the tool for the entirety of the trial—this assumption, though164

limiting, is important as through random exploration one is very unlikely to stumble upon a grasp165

(unlike a push.) We discuss this limitation and possible extensions in Section 5.166

5



Figure 3: The 6 experimental tasks. Each task requires the robot to move a block from the initial
position (cyan) to a goal configuration (red). In scenarios (b), (c), (e), and (f) either the start or
goal configurations are outside the kinematic reach of the robot and it needs to use other objects as
intermediary tools to create constraints.

The frames on each body used as reference to compute the relative transforms T are a frame at the167

center of the gripper for the robot, frames located in the handle for the hook and the stick, and the168

center of mass for the block.169

Inference: The MAP affordances learned for each object are described in detail in the appendix.170

Figure 1 (center) shows the posterior for prismatic and revolute constraints for block motion as a171

function of contact position (normalized by the max across conditions). Note that the contact enacted172

in all the interactions in our exploration is sticking: this means that in practice, the relative transform173

between the gripper and the object remains constant throughout the trial, and the inference procedure174

infers fixed constraints for them. We found that the priors weighing different types of constraints175

didn’t matter much, so long as they were lower for constraint types with more parameters—this176

avoids taking sliding motion to be a special case of free motion, for instance. A point that is relevant177

to the planning procedure that follows has to do with joint states: a prismatic joint in theory allows178

sliding both forward and backward, but we would like to preclude plans that involve magically179

”pulling” an object. Our solution is to define the axes of prismatic and revolute joints to be such180

that a positive displacement will always have the same direction as the contact normal, and then181

constrain joint displacements to be positive in our planning procedure.182

Planning: We performed experiments on the 6 tasks depicted in Figure 3. We focus on tasks that183

require using surrounding objects as tools to achieve the desired goal: these tasks naturally involve184

object-centric and sequential planning. Across the 6 tasks, the robot must reason over sequences185

of virtual and real constraints and generalize across tools (finger, stick, or hook) to actuated and186

manipulate the object.187

Tasks (a) and (b) require the robot to push a block into the goal configuration by creating a virtual188

sliding constraint. Task (a) is closest to the exploration phase setup and only requires the robot189

to reason over how to produce a virtual sliding constraint between the block and table. Figure 2190

shows the points at which the robot creates a constraint, representing the transition points between191

kinematic graphs. In this case, the stick is ignored as reflected in Tab. 1 where the depth of the192

kinematic graph is 2: the initial configuration and the sliding constraint.193
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Figure 4: Task (b): Robot uses a stick to push the block along a virtual sliding constraint to the goal
configuration – addressing kinematic reach limitations.

Figure 5: Task (c): Robot pulls the block along a virtual sliding constraint to the goal configuration
using a hook – addressing kinematic reach limitations.

The goal configuration in task (b) is outside the kinematic reach of the robot, so it must use the stick194

as a tool to extend its kinematic reach. Here, the robot needs to generalize the contact formation195

to the stick tip and push. Figure 4 shows the resulting plan with the additional transition for the196

robot and stick. We emphasize that the robot has never seen any of the tools being used on the197

block: it generalizes the contact formations it has seen during exploration to novel interactions it198

must produce. Tab. 1 shows the additional layer of planning depth required to incorporate the stick.199

Table 1: Solver times and search depth for the tasks.

Task solve time (s) solution depth
A (push) 1.328 2

B (stick push) 1.250 3

C (hook pull) 0.854 3

D (push and rotate) 1.623 4

E (stick push and rotate) 7.106 5

F (hook pull and rotate) 3.066 5

The start configuration of task200

(c) lies outside the kinematic201

reach of the robot. This scenario202

tests whether the robot can in-203

fer that it must pick up the hook204

in order to create a sliding con-205

straint (from behind) to move206

the block into position. Figure 5207

shows the resulting plan. The208

planner search depth (table 1) is209

the same as task (b), where a210

kinematic check deems the fin-211

ger push infeasible and the hook212

is then considered.213

Tasks (d) and (e) are more com-214

plex versions of tasks (a) and215

(b), where the solver needs to incorporate a revolute constraint and both create and destroy vir-216

tual constraints in order to get the block to its target configuration, essentially backtracking in order217

to switch between different kinds of block motion. Figure 6 shows the solution to task (d). We note218

the transition between panels (c) and (d) where a revolute constraint is switched to a sliding one.219

The planner incorporates this additional transition with the additional solution depth. The solution220

to task (e), Figure 7, additionally handles the limitation in kinematic reach by using the stick to221

actuate the block’s sliding constraint.222
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Figure 6: Task (d): Robot rotates then pushes the block to the goal configuration.

Figure 7: Task (e): Robot rotates the block then pushes it to the goal configuration with a stick.

Task (f) is a more challenging iteration of task (c), where the robot has to incorporate an additional223

rotation with the hook: the model’s solution can be seen in Figure Figure 8 The transition between224

the revolute constraint and the sliding one induced by the stick is occurs between panels (d) and (e)225

where the robot adjusts the contact formation slightly to facilitate the push action.226

The paths shown in Figures 2 through 8 are the first solutions computed by the planner. In principle,227

the planner could find multiple solutions to a given problem if we allowed it to search beyond the228

first feasible path. In terms of computational efficiency, a feasible solution was computed in less than229

2 seconds for the easier tasks and less than 10 seconds for the hardest (Table 1). The efficiency of the230

planning method comes from the ability to prune most trajectories at the task level, as they represent231

infeasible kinematic graph transitions. Therefore, detailed and expensive inverse kinematics only232

needed to be computed for up to 10 plans in the hardest cases.233

Qualitatively, these paths and transition points are highly intuitive. For example, the planner only234

chooses to use the stick or hook when it cannot reach the block directly. Likewise, when it needs235

to rotate a block and move it to a position beyond its reach (Figure 7), it does this by first rotating236

the block with the gripper and then picking the stick up and using it to create a sliding constraint to237

push the block.238

4 Related Work239

Besides work on Task and Motion Planning and joint inference that we have mentioned throughout,240

we identify two other main areas of related work:241
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Figure 8: Task (f): Robot rotates then pulls the block to the goal configuration with a hook.

Learning for Task And Motion Planning: Learning and inference for TAMP has mostly assumed a242

set of known, fixed primitives and tried to characterize those to help low-level search (e.g. [16, 18–243

20]). Conversely, most work in learning primitives has focused on acquiring a single action, and244

learning a controller for it from experience (e.g. [21–24].) A smaller body of work has attempted245

to learn primitives as object-oriented skills [25, 26]. [27] learn hybrid models of piecewise-smooth246

dynamics by modelling transition regions between different modes. [28] use a video dataset of247

humans doing manipulation tasks to learn a policy that executes natural language instructions de-248

scribing task plans. [29] use human demonstrations to learn mode transitions, then use RL to learn249

low-level controllers and a high-level policy.250

Planning with simple descriptors for movement: Dynamic Movement Primitives (DMPs) are251

also a popular method for learning to describe motion [30, 31] where the motion control of the252

robot is parameterized by attractor dynamics: they are a powerful tool that may be integrated in253

our framework to facilitate primitive learning. [32] use DMPs to learn finite-state machines from254

demonstrations by leveraging Bayesian non-parametric models. Similarly to our work, [33] learn to255

manipulate objects by creating a kinematic models of them, though their approach is restricted to256

actual joint mechanisms as opposed to virtual joint-like motions.257

5 Discussion258

Our approach extends kinematic planning to virtual constraints, and we showed how this repre-259

sentation can be generalized across novel tool-object interactions, and used to plan in sequential260

manipulation tasks. We discuss how this fits into the bigger picture of learning for manipulation261

below:262

Learning grasp affordances: Though our work uses a simple exploration policy to learn affor-263

dances, these policies are limited when it comes to learning about grasping, as we need to assume264

exploration trials that start with the robot already holding the relevant object. An interesting exten-265

sion would be to integrate into the exploration phase an off-the-shelf grasp synthesis algorithm to266

generate proposals for the exploration policy [34], or an approach for learning to grasp [35].267

Reasoning about object geometry: In order to generalize across effectors, we assume knowledge268

of geometric correspondence across objects, such as between the tip of a finger and the tip of a269

stick. A promising direction is to automatically discover such keypoints by analyzing geometry: for270

9



instance, reasoning that you can cut with an axe’s blade and hammer with its blunt edge. Extending271

our approach with methods to analyze contact formations could narrow this gap [25, 36], and dense272

object descriptors could help find correspondences between similar objects [37].273

Extending Kinematic Constraints: The central emphasis of our approach is on kinematic graphs274

and constraints. Extending the constraint graph representation to include kinodynamic and dynamic275

constraints can increase planner expressibility, so we could model e.g. throwing—such representa-276

tions would also help bring our framework from open-loop planning to closed-loop control. How-277

ever, this expressibility comes at the cost of more complex control laws and entanglement of ab-278

stractions. An interesting middle ground would be allowing for mixed kinematic constraints, such279

as the simultaneous translation and rotation that occurs in most real-world pushing.280
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A Grid-search exploration policies378

We describe the grid-search exploration policy used for each object379

• Block: in the initial position, the block lies on the table. Contact positions are sampled over380

one of the block’s largest lateral surfaces, and the contact force applied is always normal to381

the contact with unit magnitude.382

• Stick: in the initial position, the gripper is grasping the stick, which floats above the table.383

The contact position is fixed as that grasp position, and the force has direction sampled over384

a 3d grid and unit magnitude.385

• Hook: same as with the stick.386

B Constraint models387

We consider four types of kinematic constraint: fixed, sliding, revolute, and free. In this section,388

we discuss the parametrization and inference of the constraints given observations of interactions389

(similar to [13]). Consider bodies A and B with body-fixed frames FA and FB . The kinematic390

constraint between the two bodies relates the transformation between their frames at time t as:391

FtA = Tt(θ,λt)F
t
B (8)

where θ denotes the constraint parameters, such as the axis of rotation and translation, which is392

constant in time, and λt denotes the constraint state, such as the rotation angle or the translation393

displacement, which can vary in time. Given an exploration phase containing frame trajectories394

F 0:T
A and F 0:T

B , we want to infer the parameters θ that, along with a set of states λ0:T , minimize the395

sum of the distances between the predicted transformation and the observed transformation, namely:396

θ̂, λ̂0:T = argmin
θ,λ0:T

T∑
t=0

||FA −T(θ,λt)FB ||F , (9)

where || · ||F is the Frobenius norm computed over the transformation matrix. Depending on the397

constraint type, the optimal parameters can be obtained through a close-form solution or through a398

non-linear optimization procedure. The parameters for each of the constraint types are:399

Fixed: A fixed constraint has parameters θ ∈ R6, as a rigid body transform between the two frames400

containing 3 parameters defining the translation and 3 parameters defining the roll, pitch, and yaw401

angles. It has no state λt.402

Prismatic: A prismatic constraint has parameters θ ∈ R9, with a rigid body transform defining the403

origin of translation, and 3 parameters defining the axis of translation. Additionally, it has a state404

λt ∈ R, defining the translational displacement at time t.405

Revolute: A revolute constraint has parameters θ ∈ R6, with a three parameters defining the rota-406

tion center and three parameters defining the axis of rotation. Additionally, it has a state λt ∈ R,407

defining the angle of rotation at time t.408

Free: A free constraint has no parameters, as it allows for any kind of relative movement between409

A and B (think for instance of the possible motions of a stick after it’s grasped.)410

C Learned affordances411

The MAP affordances for each object are:412

• Block:413

– Action: fixed constraint between effector and block’s left edge.414

Motion: rotation around an axis normal to the table passing through the block’s edge415

opposite to the contact point.416

– Action: fixed constraint between effector and block’s right edge.417

Motion: rotation around an axis normal to the table passing through the block’s edge418

opposite to the contact point.419

13



– Action: fixed constraint between effector and block’s center.420

Motion: translation along an axis going from the contact point to the block’s center of421

mass.422

• Stick:423

– Action: fixed constraint between effector and handle position.424

Motion: free movement relative to the environment.425

• Hook:426

– Action: fixed constraint between effector and handle position.427

Motion: free movement relative to the environment.428

D Continuous Solver Kinematic Check429

Let us denote the position of all objects with respect to a fixed world frame at time t by xt, and the430

position of object i by xit. Since a kinematic graphG contains a collection of edges J that represent431

a constraint between two objects i and j, we can write the set of constraints that G specifies as432

Jij(x
i,xj) = 0,∀Jij ∈ EGt

. Therefore, given a graph sequence (G0,GT ), whereG0 is the initial433

graph and GT is the goal graph, we can check for the feasibility of the kinematic transitions and of434

the goal by solving the following constraint satisfaction problem:435

find x0:T , q0:T

s.t. Jij(x
i
t,x

j
t ) = 0,

Jij(x
i
t+1,x

j
t+1) = 0,

FKi(qi) = xi,FKj(qj) = xj ,

∀t ∈ [0, T ] ,

∀Jij ∈ EGt ,

436

where qi and FKi are respectively the vector of joint positions and the forward kinematics function437

for object i.438

We solve this problem by first disregarding the forward kinematics constraints, and then solving439

for joint poses using inverse kinematics. Concurrent work [38] uses a similar two-step approach440

to get real-time motion replanning, highlighting the efficiency of this formulation. It comes at a441

price though: since this procedure commits to a task-space plan before checking for kinematic442

feasibility, it’s possible that it will disregard adequate high-level plans because it didn’t consider443

joint information when positing a task-space trajectory. To illustrate this point, consider the task of444

pulling an object with a hook such that it’s close enough for the robot to grasp it. Being close enough445

to grasp is a condition that only makes sense in joint space: since that information is unavailable to446

the robot at the time of committing to a task-space plan, the robot will likely settle on a bad task-447

space plan and consider the problem infeasible once it tries to translate that plan into join-space.448

A possible workaround is to introduce task-space constraints reflecting the robot’s workspace, but449

in practice none of our experiments involve such corner case conditions, and so we stick with the450

original formulation.451
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