
Discovering a symbolic planning language from continuous experience

João Loula (jloula@mit.edu)

Department of Brain and Cognitive Sciences

46 Vassar Street, Cambridge, MA 02139 USA

Tom Silver (tslvr@mit.edu)

Electrical Engineering and Computer Science

32 Vassar Street, Cambridge, MA 02139 USA

Kelsey Allen (krallen@mit.edu)

Department of Brain and Cognitive Sciences

46 Vassar Street, Cambridge, MA 02139 USA

Josh Tenenbaum (jbt@mit.edu)

Department of Brain and Cognitive Sciences

46 Vassar Street, Cambridge, MA 02139 USA

Abstract

Humans make plans with remarkable flexibility by leverag-
ing symbolic representations. How are these representations
learned? We present a model that starts out with a language
of low-level physical constraints and, by observing expert
demonstrations, builds up a library of high-level concepts that
afford planning and action understanding. We demonstrate
its versatility through experiments inspired by developmental
psychology literature.
Keywords: planning; robotics; language of thought; develop-
mental psychology

Introduction
Plans live a double life. On the one hand, they are discrete
mental representations: a plan to make yourself a cup of
coffee involves creating abstractions like “pick up mug” and
“pour coffee in mug”. On the other hand, they specify con-
tinuous motor actions in the world, like the precise trajectory
you will use to reach for the mug, and the angle at which
you will pour coffee into it. This separation allows plans
to be robust to changes in the environment (like picking up
a differently-shaped mug) while still enjoying the composi-
tional benefits of a language of thought (Fodor, 1975) (like
recombining abstract procedures such as ”pick up X” and
”pour X in Y”). This observation has inspired recent work in
robotics, which uses pre-built libraries of high-level actions
to create plans that are then grounded out in low-level mo-
tor commands (Kaelbling & Lozano-Pérez, 2010; Toussaint,
2015; Dantam et al., 2016; Toussaint et al., 2018). This ap-
proach allows robots to execute complex sequential plans and
use tools in human-like fashion: such models might be a good
point of departure to understand how humans implement their
abstract plans in the real world.

But there remains the inverse problem—how is it that we
develop these symbolic planning abstractions when all we
perceive is continuous motion? This is an instance of the
symbol grounding problem (Harnad, 1990) that humans solve
over and over again: children seem to have the basics of
such a language of plans figured out by the time they’re a
few months old, and can bring it to bear both on executing

their own plans (Willatts, 1999) and on understanding others’
(Sommerville et al., 2005; Jara-Ettinger et al., 2016; Liu &
Spelke, 2017).

In this paper, we propose a model of how an agent, en-
dowed with a simple representation language inspired by core
knowledge models of cognition (Spelke & Kinzler, 2007),
might learn high-level representations that allow for efficient
planning and action understanding. What the model has built-
in is the notion of objects, of spatial relations, of agents,
and of goals; what it learns are predicates that carve out sta-
ble properties of its environment and actions that allow these
properties to be changed.

We begin by introducing the planning algorithm of Tous-
saint et al. (2018), used as a starting point for our model. We
then present our approach to inverting that algorithm in order
to infer symbolic predicates and actions from expert demon-
strations. Finally, we present experiments that showcase how
the model draws inferences in different scenarios inspired by
cognitive science experiments.

Planning: Hybrid Models
Given an initial state, the model introduced by Toussaint et al.
(2018) computes trajectories that reach a goal condition while
minimizing a given cost function akin to effort. These trajec-
tories are in general very hard to optimize because of their
non-smoothness: objects move in and out of rest, contacts
are created and destroyed. Toussaint et al. (2018)’s answer
to this is to divide the trajectory into modes, each of which is
smooth, and to pre-define a set of actions which allow for spe-
cific transitions between modes. Approaches in this spirit are
called hybrid methods, as the planning occurs in two phases:
first the model chooses a sequence of high-level actions, then
it computes a low-level implementation of these actions.

More precisely, the model has a pre-specified set of modes
s and actions a, and it is given as input an initial state and
stable mode x0 and s0, a cost function f , and constraints h
for the goal, path and mode switches. Its objective is then to
solve the following minimization problem:

min
x,a1:K ,s1:K

∫ T

0
fpath (x̄(t))dt + fgoal(x(T))

s.t. x(0) = x0, hgoal(x(T)) = 0

∀t ∈ [0,T] : hpath(x̄(t),sk(t)) = 0,

∀k ∈ {1, . . . ,K} : hswitch(x̂(tk),ak) = 0,
sk ∈ succ(sk−1,ak).

That is, to find a trajectory x and a sequence of actions
a1:K that define a sequence of stable modes s0:K s.t. we can
minimize the cost function f over that trajectory, under the
mode constraints hpath, the action constraints hswitch, and the
goal constraint hgoal . For the remainder of the paper we’ll
refer to this entire procedure as the direct model.

Action Understanding
Our main technical contribution is a model that takes as input
a continuous scene and outputs the predicates that describe
the stable relations in the scene as well as the actions that
govern the transformation of these predicates.

Segmentation
This part of the model is responsible for carving the input tra-
jectory into segments inside of which there exist only smooth
dynamics. Take the trajectory in Figure 1 as example: be-
fore the gripper touches the orange block, the dynamics in
the scene are smooth and can be described by a gradual in-
crease in the gripper’s x position, while the two blocks remain
at rest. When the gripper touches the orange block, however,
there is an abrupt transition in dynamics as the block ceases
to be at rest: the new dynamics can be described as the or-
ange block moving horizontally along with the gripper, and
the pink block being at rest. It is the job of the segmentation
procedure to cut the scene up into these two parts.

More specifically, we frame the problem of segmenting
modes as that of time-series segmentation: going back to the
direct formulation presented in section the Planning section,
our goal here is, from a state sequence {xt}, t ∈ [1, . . .T], to
infer the switch times {tk}, k ∈ [1, . . .K], that is, the time-
points in the trajectory in which a mode switch occurred.
This approach to mode segmentation major has the benefit of
exploiting temporal information, in contrast to clustering ap-
proaches (e.g. Lee et al. (2017)). We use the greedy top-down
segmentation algorithm described in Keogh et al. (2004):

oldSplits← []
while error > threshold do

error, newSplit← argmin piecewiseFit(x, oldSplits ∪
newSplit)

oldSplits← oldSplits ∪ newSplit

The crucial choice here is the function space used for
piecewiseFit. Since the state in each mode k is governed by a

set of constraints hpath(·,sk(t)) that belong to some smooth
function class F , we must pick a function approximation
space G which we believe to be a good model for F . Since it
would be very hard to use the space of all smooth functions,
we set G as a linear function space, which in practice yielded
good results, with the only downside of over-segmenting non-
linear trajectories. The experiments were run with the value
of 1e−5, though the algorithm proved quite robust to changes
in the error threshold. It is also worth noting that nothing pre-
cludes the use of more sophisticated functions; such functions
could easily be explored in future work.

Predicate discovery and goal inference
Segmentation gives us a set of smooth modes, but these are
still continuous: predicate inference is the step that will create
discrete, symbolic descriptions for the stable physical proper-
ties of these modes. Continuing the example from the previ-
ous section, we would like the first segment’s stable proper-
ties to be described as something like ”atRest(), atRest()”,
and the second one’s as atRest(), hContact(,)”, where
”atRest” is a predicate that specifies that both an object’s x
and y position are zero, and ”hContact” is a predicate that
defines a stable horizontal contact between two objects.

Other sets of predicates can also be used to describe the
scene, but not all of them are created equal: predicates will
be most useful if when they provide a succinct description
of each segment’s dynamics that is rich enough to support
planning. Predicate definitions are not given to the model,
however, and at this point in its inference pipeline it has no
way of deciding how useful a given set of predicates is—that
will be accomplished by the forward planning procedure later.
Therefore, all that the predicate inference step does is sample
from the derivations of a probabilistic context-free grammar
(PCFG) that generates a set of predicates p1:M by combin-
ing pre-specified low-level constraints c1:N . The probability
given by the grammar’s derivations is:

p(p1:M) ∝ Π
M
m=1γ

(
Π

N
n=1 p(cn)

1cn∈pm
)

(1)

The model uses the following pre-specified constraints as
a basis for building predicates:

• Object1’s x velocity or y velocity is equal to 0;

• Object1 and Object2’s x position, y position, x velocity or
y velocity are equal to each other;

• The difference between Object1 and Object2’s x position
(resp. y position) is equal to Object1’s width (resp. height);

• The difference between Object1 and Object2’s x position
(resp. y position) is equal to Object1’s width (resp. height)
or its inverse.

In practice for the experiments we present, the number of
constraints present in learned predicates is one or two (see
some of predicates learned in our experiments in Table 1): the
form of the derivations’ probability in equation 1 makes it so

goal inference planning model
(Toussaint et al., 2018)

action under-
standing (ours)

Goal:
hContact(,)

high-level
planning

push(,)

def push:
[...]

action
application

action
discovery

atRest()
atRest()

atRest()
hContact(,)

def atRest:
[...]

def hContact:
[...]

low-level
optimization

predicate
discovery

joining
trajectory

segmentation

Planner input Actions States Segments Trajectory

testing hypotheses through forward planning

Figure 1: illustration of the planning algorithm of Toussaint et al. (2018) (solid lines) as well as our model, which inverts it
(dashed lines). It is important to note that our model is not given the predicates (like “atRest”) or actions (like “push”), and
instead has to discover them through experience. Some of the examples of predicates and actions discovered by our model can
be found in Table 1.

that the PCFG has a tendency to group constraints together
into the same predicate whenever possible rather than split
them into different ones.

We will use our proposed set of predicates in order to create
a discrete description of each segment in the trajectory. This
corresponds to simply applying our list of predicates, under
every possible grounding, to each timestep in a segment and
checking which ones hold through the entirety of it. Ground-
ing refers to the application of predicates to specific objects
in the scene, as the predicates themselves are lifted, i.e. ab-
stract. We will call a segment k’s state the list of grounded
predicates that hold through the entirety of that segment, and
denote it by sk. This is also the step in which the goal is
inferred, by checking which grounded predicates hold in the
final timestep of the trajectory.

Action discovery
After the previous step, we are left with a sequence of dis-
crete states s0:K (lists of grounded predicates), which describe
the stable dynamics in each segment of the scene. We will
proceed to use these to infer a set of lifted actions α1:L—
transitions between lifted predicates—whose groundings a1:K
can explain the transitions between all this sequence of states.

A lifted action α has two components: preconditions and
effects, both of which are a set of lifted predicates. We
will say that an action grounding a explains a state transition
(st ,st+1) if st contains a’s preconditions and the difference
between st+1 and st is the set of a’s effects. If that is the case,
we’ll say that succ(st ,a) = st+1.

We can now write the expression for the likelihood of a set
of lifted actions given a sequence of states:

p(α1:L|s1:K) ∝ p(s1:K |α1:L)p(α1:L)

∝ p(α1:L)Π
K
k=11∃ak grounding of α∈α1:L

s.t. succ(sk−1,ak)=sk

, (2)

that is, we are looking for a sparse set of lifted ac-
tions whose groundings can still explain all of the state
transitions observed. We pose learning as a program in-
duction problem, where a list of actions is defined by
a PCFG (which roughly follows the following genera-
tion: action list→action→(preconditions, effects)→predicate
list→predicate). Inference is then performed using enumera-
tive search, which in practice outperformed MCMC. This is
implemented using the LOTlib library (Piantadosi, 2014).

A subtle aspect of action inference is determining precon-
ditions: in contrast to the classic setting of learning action
schemas Drescher (1991), where actions are assumed to take
place whenever their preconditions are met, in our problem
formulation actions are optional and decided upon by the
agent. One consequence of this is that any scene can be
explained by actions that have no preconditions at all. Our
workaround to this problem is to require that all actions have
at least one precondition, and to use the forward planning step
as a check on our action inference: if we are too optimistic
about when an action might apply, we will likely conceive of
plans that seem more efficient than those we observed, which
contradicts our rationality assumption.

Testing hypotheses through forward planning
Now that we have built up a library of actions and predicates
from the scene, it remains to verify whether these are ac-
tually adequate for explaining the expert demonstrations we
observed. We will do that by running the planning model in
the forward direction given the initial state of the scene, the
actions and predicates we learned, and the goal we hypothe-
sized in terms of these learned predicates (which is just the
final state, i.e. the set of all grounded predicates that apply
to the last timestep in the trajectory). We will then compare
the planner’s output trajectory with the trajectory we’ve ob-
served. If they match, we stop our inference and take our
hypothesized predicates and actions to be correct. Most of
the time, though, we will either fail to conceive of a plan be-
cause our learned action set is not rich enough, or we will
create a plan that is more efficient than the demonstration
we observed—since we are supposing our observations stem
from a rational agent, that means our hypothesized predicates
are too lax and are underconstraining the scene. In both of
these cases, we will go back to predicate inference and sam-
ple again from p(p1:M).

Experiments
In all the experiments that follow, the model is trained from
scratch using as input at train time only a set of trajecto-
ries generated by an expert using the algorithm of Toussaint
et al. (2018) described in the Planning section. Trajecto-
ries are represented as x and y coordinates and velocities for
each object in the scene (in the experiments presented here,
these are the gripper + one or two blocks, and they maintain
their identity across different scenarios in the same experi-
ment). The expert’s goal is represented as a predicate (such
as hContact(,)) and it remains unchanged between train and
test time, but the model does not have access to it: its test time
predictions hinge upon its capacity to infer the goal in its cor-
rect representation from the train data.

When inferring a trajectory, the model uses the same plan-
ning algorithm, but it does not have access to the goal, pred-
icate and actions of the expert, having instead to provide its
own learned versions of these concepts. Things that the plan-
ning procedure does have baked in and that are used by the
model are the notion of objects as cohesive, continuous, solid

entities, the spatial layout of the scene, including walls, and
the optimizing procedure itself which can be interpreted as a
rationality hypothesis.

Learned predicates Learned actions

Exp.
2

def aside(o1, o2):
o1.x position =

o2.x position ±
o2.width

def leftOf(o1, o2):
o1.y position =

o2.y position +
o2.height

def pick(o1, o2):
vRest(o1)→

vContact(o1, o2)

Exp.
3

def hRest(o1):
o1.x position = 0

def hContact(o1, o2):
o1.x position =

o2.x position ±
o2.width

pick (as in Exp. 2)

def push(o1, o2):
hRest(o1)→

hContact(o1, o2)

Table 1: some of the predicates and actions learned in the
experiments. The predicates are written in terms of the
pre-specified low-level constraints; the actions are written in
terms of the predicates. We have named them according to
intuitive interpretations of their role.

Experiment 1: Goal-efficiency
We start with an experiment that mimics the one in Skerry
et al. (2013). In that study, 3-month olds observed an adult
reaching around a barrier in order to grasp an object (habitu-
ation phase). The barrier was then removed, and the infants’
looking time was measured as the adult reached for the object
either directly or repeating the roundabout motion of the ha-
bituation phase, now superfluous. Infants showed surprisal at
the ineffective motion, so long as they had been provided with
previous experience reaching for objects by means of sticky
mittens.

Here, we test whether our model exhibits the same effect
by having it observe an expert reach for an object behind a
barrier and then analyzing its prediction on a scenario where
the barrier has been lifted (Figure 2).

Results
Results for Experiment 1 are presented in Figure 2. We ob-
serve that, though many generalizations would have been pos-
sible given this single observation, including expecting the
exact same trajectory to be performed, the model predicts
an optimal path of the gripper towards the object, just as the
sticky mittens infants. Two features of the model are crucial
for this generalization: (1) the notion of objects that is built

Observation Prediction

Figure 2 (Experiment 1): the observed expert trajectory (left)
and the model’s predicted trajectory given a new starting
state (right). Different timepoints in the trajectory are super-
imposed into a single image: lighter objects represent later
points in time.

into the model’s predicate language, allowing it to infer that
doing things with objects is a more interesting goal to people
than, say, executing a specific trajectory and (2) the notion of
agents as individuals that act rationally to achieve their goals,
instantiated in the model by its forward planner pass.

Experiment 2: Conceptual distinctions
In this section, we present an experiment that is analogous to
two studies on conceptual distinctions in language and their
effect on humans’ actions and predictions.

In Hespos & Spelke (2004), infants raised in Korean and
English-speaking environments are given a physical predic-
tion task where an object is contained inside another in either
a tight or a loose fit. A physical scene then unfolds, whose
outcome can either be consistent or inconsistent with the type
of fit presented. Crucially, the Korean language has distinct
prepositions for tight fit vs. loose fit. The study finds that 5-
month old infants from the two groups are surprised when the
physical event violates the type of fit presented, but finds that
only English-speaking 10-month old infants are insensitive to
whether the trial is consistent or inconsistent. The authors
interpret the findings as an effect of the environment on the
English-speaking babies: though they were initially sensitive
to the conceptual distinction, repeated observations grouping
the two conditions together make them learn to ignore it.

In Pyers et al. (2010), first- and second-generation
Nicaraguan sign language speakers are tested on a naviga-
tion task. Second-generation signers distinguish between al-
locentric and egocentric “left of” and “right of”, whereas first-
generation signers do not, rendering their concepts of “left
of” and “right of” effectively identical to that of “to the side
of”. When given a navigation task that requires representing
the concept “to the left of the blue wall”, second-generation
signers can successfully solve it, but first-generation signers
cannot. Once again, the authors interpret the results as show-
ing that it is the fact that this conceptual distinction is marked
in language that allows humans to successfully use it to solve
a different task.

Taking inspiration from these studies, we create an exper-
iment where the model’s environment (i.e. the set of obser-
vations it makes) determines whether it will be sensitive or
not to an important conceptual distinction. Two environments
are created: in the “Left/right distinction” environment, the
model observes an expert pick an orange block up and place
it to the left of a pink block in two trials, one of which involves
executing a trajectory that is substantially more effortful than
placing it to the pink block’s right. In the “No distinction”
environment, the orange block is placed to the pink block’s
left or right indiscriminately. The two models are then asked
to make a prediction about the same scene.

Env. Observation Prediction

Left /
right

None

Figure 3 (Experiment 2): two different models are trained
from scratch by being given expert trajectories from either the
“Left/right distinction” condition (top left) or the “No distinc-
tion” condition (bottom left). They are then asked to predict
what the expert will do in a new scene: the “Left/right dis-
tinction” model’s prediction is shown in the top right; the “No
distinction” model’s prediction is shown in the bottom right.
Different timepoints in the trajectory are superimposed into
a single image: lighter objects represent later points in time.
Trajectory images were downsampled for illustration.

Pick observation Push observation

Test: Push + Pick

Figure 4 (Experiment 3): the model observes an expert trajectory in a pick demonstration (top left) and a push demonstration
(top right), with the same goal. It is then asked to predict the trajectory in a new environment where achieving the goal
requires executing both the pick and the push actions: its predicted trajectory is shown at the bottom. Trajectories images were
downsampled for illustration.

Results

Results for Experiment 2 are presented in Figure 3. We can
see that the two different models make very different predic-
tions for the same scene: the model trained on the “No dis-
tinction” environment predicts that the orange block will be
simply slid towards the pink one, whereas the model trained
on the “Left/right distinction” environment predicts that the
orange block will be dragged above the pink one unto its left
side. This difference in predictions stems from a difference
in learned predicates (see Table 1): akin to the results in Hes-
pos & Spelke (2004) and Pyers et al. (2010), the lack of a
distinction between left and right in the environment leads to
insensitivity to this distinction in the learned predicates, and
vice-versa.

Experiment 3: Compositionality

One of the core features of humans’ reasoning power is com-
positionality: the capacity to create complex concepts by
combining simpler ones (Fodor & Pylyshyn, 1988). One way
in which compositionality shows up in planning is through
the ability to recombine parts of solutions to old problems in
order to solve new ones. In our final experiment, the model
is trained from scratch separately on two expert demonstra-
tions of the same goal: in the first demonstration an orange
block is picked up and placed upon a pink block; in the sec-
ond demonstration the pink block is pushed towards a wall,
and the orange block is then pulled on top of it (top part of
Figure 4).

We then combine the learned predicates and actions from
the two demonstrations, and ask the resulting model to predict
a trajectory in a new environment where successfully placing
the orange block atop the pink block requires both pushing
and picking actions, thus testing whether it can productively
combine two separately learned concepts.

Results
Results for Experiment 3 are presented in Figure 4. We can
see that the model not only learns the pick and push actions
as well as the relevant predicates (see Table 1), but is also
able to recombine them in a novel way in order to predict
a complex sequence of actions in a new environment. Such
compositional productivity is one of the main claims to fame
of actions in hybrid models, and we have shown here that it
extends to our learned actions.

Discussion
We have presented a model that starts with a simple language
of objects and low-level spatial constraints and, through ex-
perience, builds out of it high-level concepts that afford plan-
ning and action understanding. We have shown that it comes
to understand agents and actions in some of the ways that hu-
mans do, such as expecting goal-efficiency and attuning its
conceptual vocabulary to its environment, and that it is ca-
pable of combining learned concepts in novel ways. Such a
model could be useful both for getting robots to learn to cre-
ate and execute human-like plans as well as to give us insight
into how children learn to do this. For instnace, there has
been some debate in the literature as to why it is that infants
seem to require first-person experience in attaining goals in
order to make inferences about goals and acting rationally to
achieve them (Sommerville et al., 2005; Skerry et al., 2013).
Our model suggests a possible interpretation: though its no-
tion of goals is pre-built, it is still necessary for it to compute
an agent’s expected trajectory given a certain goal and envi-
ronment: it could be the case that it is easier to compute this
quantity if one has first-person experience performing such
trajectories.

The current version of the model suffers from an efficiency
bottleneck in that each predicate and action inference pro-
posal requires a forward pass through the planning algorithm

in order to be evaluated. This makes inference very slow as
this must be done for hundreds of proposals must be evalu-
ated. It is also a cognitively implausible feature: though a
forward pass through a generative model is a standard feature
in Bayesian accounts of cognitive tasks, and studies there is
some indirect evidence of this happening in action interpre-
tation, it is unlikely that humans would imagine so many dif-
ferent scenarios unfolding in order to interpret a scene. Fu-
ture work will investigate how to render this inference process
more efficient such that it might scale to real-world scenarios.

References
Dantam, N. T., Kingston, Z. K., Chaudhuri, S., & Kavraki,

L. E. (2016). Incremental task and motion planning: A
constraint-based approach. In Robotics: Science and sys-
tems (pp. 1–6).

Drescher, G. L. (1991). Made-up minds: a constructivist
approach to artificial intelligence. MIT press.

Fodor, J. A. (1975). The language of thought (Vol. 5). Har-
vard University Press.

Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and
cognitive architecture: A critical analysis. Cognition, 28(1-
2), 3–71.

Harnad, S. (1990). The symbol grounding problem. Physica
D: Nonlinear Phenomena, 42(1-3), 335–346.

Hespos, S., & Spelke, E. (2004). Conceptual precursors to
language. Nature, 430(6998), 453.

Jara-Ettinger, J., Gweon, H., Schulz, L. E., & Tenenbaum,
J. B. (2016). The naı̈ve utility calculus: Computational
principles underlying commonsense psychology. Trends in
cognitive sciences, 20(8), 589–604.

Kaelbling, L. P., & Lozano-Pérez, T. (2010). Hierarchical
planning in the now. In Workshops at the twenty-fourth
aaai conference on artificial intelligence.

Keogh, E., Chu, S., Hart, D., & Pazzani, M. (2004, June).
Segmenting Time Series: A Survey and Novel Approach.
In Series in Machine Perception and Artificial Intelli-
gence (Vol. 57, pp. 1–21). World Scientific. Retrieved
2018-12-20, from http://www.worldscientific.com/
doi/abs/10.1142/9789812565402 0001 doi: 10.1142/
9789812565402 0001

Lee, G., Marinho, Z., Johnson, A. M., Gordon, G. J., Srini-
vasa, S. S., & Mason, M. T. (2017, October). Unsu-
pervised Learning for Nonlinear PieceWise Smooth Hy-
brid Systems. arXiv:1710.00440 [cs]. Retrieved 2018-12-
19, from http://arxiv.org/abs/1710.00440 (arXiv:
1710.00440)

Liu, S., & Spelke, E. S. (2017). Six-month-old infants expect
agents to minimize the cost of their actions. Cognition,
160, 35–42.

Piantadosi, S. T. (2014). LOTlib: Learning and In-
ference in the Language of Thought. available from
https://github.com/piantado/LOTlib.

Pyers, J. E., Shusterman, A., Senghas, A., Spelke, E. S., &
Emmorey, K. (2010). Evidence from an emerging sign
language reveals that language supports spatial cognition.
Proceedings of the National Academy of Sciences, 107(27),
12116–12120.

Skerry, A. E., Carey, S. E., & Spelke, E. S. (2013). First-
person action experience reveals sensitivity to action effi-
ciency in prereaching infants. Proceedings of the National
Academy of Sciences, 201312322.

Sommerville, J. A., Woodward, A. L., & Needham, A.
(2005). Action experience alters 3-month-old infants’ per-
ception of others’ actions. Cognition, 96(1), B1–B11.

http://www.worldscientific.com/doi/abs/10.1142/9789812565402_0001
http://www.worldscientific.com/doi/abs/10.1142/9789812565402_0001
http://arxiv.org/abs/1710.00440

Spelke, E. S., & Kinzler, K. D. (2007). Core knowledge.
Developmental science, 10(1), 89–96.

Toussaint, M. (2015). Logic-geometric programming: An
optimization-based approach to combined task and motion
planning. In Ijcai (pp. 1930–1936).

Toussaint, M., Allen, K., Smith, K., & Tenenbaum, J. (2018).
Differentiable physics and stable modes for tool-use and
manipulation planning. Proceedings of Robotics: Science
and Systems, Pittsburgh, PA.

Willatts, P. (1999). Development of means–end behavior in
young infants: Pulling a support to retrieve a distant object.
Developmental psychology, 35(3), 651.
[pages=-]template-graphics[pages=-]template-floats

	Introduction
	Planning: Hybrid Models
	Action Understanding
	Segmentation
	Predicate discovery and goal inference
	Action discovery
	Testing hypotheses through forward planning

	Experiments
	Experiment 1: Goal-efficiency
	Results
	Experiment 2: Conceptual distinctions
	Results
	Experiment 3: Compositionality
	Results

	Discussion

