
Learning constraint-based planning models from demonstrations

João Loula1, Kelsey Allen1, Tom Silver2, Josh Tenenbaum1

Abstract— How can we learn representations for planning
that are both efficient and flexible? Task and motion planning
models are a good candidate, having been very successful in
long-horizon planning tasks—however, they’ve proved challeng-
ing for learning, relying mostly on hand-coded representations.
We present a framework for learning constraint-based task
and motion planning models using gradient descent. Our model
observes expert demonstrations of a task and decomposes them
into modes—segments which specify a set of constraints on
a trajectory optimization problem. We show that our model
learns these modes from few demonstrations, that modes can
be used to plan flexibly in different environments and to achieve
different types of goals, and that the model can recombine these
modes in novel ways.

I. INTRODUCTION

To take a simpler case: suppose we want, from a few
demonstrations, to learn a model that can efficiently plan
to pick a block up and place it in a given position. One easy
thing to do is to learn a step-wise model of the task, and plan
by rolling that model forward until we arrive at the goal
state—when state and action spaces are large, or planning
horizons are long, this is like searching for a needle in a
haystack. Another approach [1] involves having our model
be differentiable, so that we can optimize our trajectory by
doing gradient descent through it. The problem with that is
that the task itself is non-differentiable as it involves creating
contacts, and so any action around the initial state has no
influence on the block’s position, giving us no gradient
information.

How then can we represent models in a way that is more
amenable to planning? An avenue that has proved promising
is to define a model in pieces, each of which is smooth,
such that planning can happen by first defining the sequence
of pieces to use and then optimizing a trajectory based on
them. [3], for instance, do so by having the model pieces be
handcoded constraints that aid in a trajectory optimization
procedure.

This approach, though it has found great success in long-
horizon planning, presents a challenge for learning: whereas
learning a step-wise model comes down to simply collecting
state-action pairs (st, a, st+1) and building a self-supervised
regressor f(st, a) = st+1, learning a hybrid representation
like the one handcoded in [3] has proved more difficult. In
this paper, we present a model that learns these piece-wise
constraint representations from expert demonstrations. We

1João Loula, Kelsey Allen, and Josh Tenenbaum are with the Department
of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA
jloula@mit.edu, krallen@mit.edu, jbt@mit.edu

2Tom Silver is with the Department of Electrical Engineering and Com-
puter Science, MIT, Cambridge, MA 02139, USA tslvr@mit.edu

Fig. 1: The three experiments used in this paper, requiring
the model to learn the gist of an action in order to adapt it at
test time. 1: At train time, the model observes demonstrations
of an expert reaching for a goal in OpenAI Gym’s Reach
environment [2]. At test time, the model has to plan for
reaching a sequence of goals at specific times. 2: At train
time, the model observes demonstrations of an expert picking
up a block and placing it on a green mat. At test time,
the model must plan to place the block on the mat while
avoiding an obstacle. 3: At train time, the model observes
demonstrations of an expert either picking up or pushing a
block. At test time, the agent must plan to place one block
above another by combining pushes and picks.

show that representations of this form allow our model to
learn from few examples and to plan in out-of-distribution
tasks, as well as creatively recombine pieces of solutions to
previous problems.

II. PREVIOUS WORK

Task and motion planning: describes high-level repre-
sentations of skills or models which are then parametrized
[4], [5], [6], [7]. Planning happens by first searching for a
subset of handcoded representations to be used and then op-
timizing the continuous parameters of these representations.
These are the family of planning models we’re trying to
learn from data, specifically the mode-based approach of [3],
which we explain in detail in the next section.

Reconciling learning and symbolic planning: [8] use
deep learning as a way of performing search over symbolic
spaces, without dealing with the low-level action space. [9]
constrain the learning problem by introducing symbolic rep-
resentations, such as deictic references, but do not show that
their learned models are useful for planning. [10] similarly
use a supervision signal in order to break a task into smaller
parts that can be recomposed, but their components are
fixed policies rather than pieces of a model, which restricts
the flexibility with which they can be used in planning.

[11] also unsupervisedly segment demonstrations in order
to learn piecewise representations of them, but their pieces
are dynamic motion primitives (DMPs) fit to the specific
trajectory observed, and their planning procedure is restricted
to finding the most similar demonstration and using its
DMPs.

Learning constraints: previous work on learning physics
constraints has mostly relied upon using pre-built sets of
constraints. Seminal work by [12] introduced a model that
learned rule-like representations for actions in a blocks world
by enumerating primitives from a pre-specified grammar.
More recently, [13] introduce a model for one-shot learning
of geometric constraints, but unlike our work it does so by
matching a given trajectory to existing constraints stored
on a pre-built knowledge base. The approach most similar
to our work is [14], where a planning model also learns
optimization constraints using gradient descent. However,
the authors’ approach is limited to box constraints, i.e.
scalar bounds on a single feature,which excludes all the
constraints our model attempts to learn—such as contacts and
spatiotemporal continuity—which consist of relationships
between multiple features.

Alternative approaches: Contact Invariant Optimization
[15] can be seen as similar in spirit to task and motion
planning, with the high-level representations being the scalar
variables that indicate which constraints are active, and
planning happening through the gradual enforcement of
constraints. In the literature attempting to learn to do model-
based planning, there are approaches based on using differ-
entiable forward models and planning by backpropagating
through them [1], [16], which hinges upon the environment
not having non-smooth transitions such as contacts. A dif-
ferent line of work has attempted to solve this problem
with forward model rollouts not by introducing higher-level
representations and symbolic plans, but rather by learning to
shape value functions so as to make search more efficient
[17], [18]. Lastly, it’s important to note that model-free
algorithms have enjoyed success in domains where it is hard
to conceive of an approach to planning using stable modes,
such as complex dexterous manipulations [19].

III. BACKGROUND: PLANNING

The main contribution of this paper is a framework for
learning from demonstrations the representations required to
plan with the model introduced by [3] (in that work, like most
in the task and motion planning literature, the representations
were hand-coded). The learning framework will be presented
in the next section; in this section, we briefly introduce the
planning model itself.

In the spirit of constraint-based task and motion planning
approaches, we formalize our approach to planning as a
trajectory optimization problem, subject to initial, goal, and
mode constraints. More precisely, we are searching for a
trajectory x̂ ∈ RkT—where k is the number of features (such
as object positions, velocities, and gripper opening) and T
is the number of timesteps in the trajectory—that minimizes
an optimization problem of the following form:

x̂ := argminx

∫ T

0

C (xt) dt

subject to initial constraints fi(x0) ≤ 0,

goal constraints fg(x) ≤ 0,

and mode constraints fm(x[tm:tm+1]) ≤ 0, ∀m,

where we suppose some smoothness condition on the fs
such that, even though dynamics may not be smooth between
modes (for instance in the moment we start pushing an
object), they will be smooth inside any given mode, allowing
for efficient trajectory optimization.

Thus, planning proceeds at two levels, as shown in figure
III: at the high level, the model decides on a sequence of
modes using breadth-first tree search; at the low-level, each
node in the tree becomes a trajectory optimization problem,
whose constraints are defined by sequence of modes in that
node. The planner returns the first sequence of nodes that
arrives at a feasible low-level trajectory.

High-level
planning:
tree search

Low-level
planning:
trajectory
optimization

find a feasible trajectory subject to the constraints:
, for t in , for t in{ {

Fig. 2: A schematic of the planning procedure used in this
paper, which is the one introduced by [3] with a few small
changes. Planning happens at two levels: at the high level,
the model decides on a sequence of modes using breadth-first
tree search; at the low-level, each node in the tree becomes
a trajectory optimization problem, whose constraints are
defined by sequence of modes in that node. The planner
returns the first node that arrives at a feasible low-level
trajectory.

One important difference between the planning model
we implement here and that of [3] is that we do away
with preconditions for mode transitions. Interestingly, for the
tasks we present here, this choice doesn’t alter the generated
plans. To see why, imagine a pushing task consisting of two
modes—Mode 1 constrains the block to be at rest, and Mode
2 specifies a horizontal contact between gripper and block.
A model can specify that a precondition for Mode 2 is that

the gripper be next to the block, but it can also leave it to
the trajectory optimization procedure to verify that the only
feasible trajectories are the ones where Mode 1 ends with
the gripper next to the block. This makes learning easier,
as it spares us from dealing with the hard task of learning
preconditions, but it makes planning harder, as we lose the
possibility of pruning many mode sequences, and the work of
verifying preconditions is in practice still done, but offloaded
to the optimizer. For the kinds of tasks we’re interested in in
this paper (our experiments include plans with at most five
modes), this is a trade-off we’re happy to accept.

IV. LEARNING MODE-BASED MODELS

This paper’s main contribution is a framework for learning
a model like the one in section III from demonstrations: see
figure 3 for an overview.

To start out, we note that by parametrizing a smooth func-
tion that goes from the space of observation pairs (xt, xt+1)
to the real numbers, we can express a parametrized constraint
as

fθ(xt, xt+1) = 0.1

Though there are many other possible choices of domains
for the learned constraints, our choice of observation pairs
is motivated in a few different ways. On the one hand, it
defines a very expressive space, encompassing for instance
all stepwise forward models xt+1 = g(xt) (it suffices to set
f(xt, xt+1) = xt+1−g(xt)) while also being able to express
more abstract relations such as collision avoidance, contacts,
and joints. On the other hand, since each such constraint
is time-independent, our learning problem can benefit from
weight sharing through time, greatly reducing the number of
parameters to be learned.

In our model, these parametrized functions will stand
in for the mode constraints presented in section III—this
represents the smooth part of the optimization problem. The
non-smooth part comes from the mode changes, making it so
that different constraints hold at different points in time. At
train time, we assume that all the observed demonstrations
follow the same sequence of modes. We’ll call switch times
the timesteps when a change in mode occurs, and use sj to
denote the switch time between modes mj−1 and mj . Thus
the constraints that mode mj places on the trajectory x are
given by

fθmj
(xt, xt+1) = 0,∀t ∈ [sj , sj+1]

(in practice, we learn multiple constraints for each mode—
we omit this here for clarity of notation.) Finally, our goal is
to find the constraint parameters θ that minimize, across all
trajectory demonstrations xk0:T , the following loss function:

1We choose to learn only equality constraints in this paper, as they suffice
for the problems we are interested in and allow us to reduced the number of
learned constraints by half, but our framework can use inequality constraints
just as well.

Lreconstruction (x, x̂) =
∑
k

||xk − x̂k(θ)||2,

where x̂k(θ) := argminx

∫ T

0

C (xt) dt

subject to initial constraints fki (x0) ≤ 0,

goal constraints fkg (x) ≤ 0,

and mode constraints fθmj
(xt, xt+1) = 0,

∀j, ∀t ∈ [skj , s
k
j+1].

Solving for θ is a hard optimization problem, as it requires
doing inference through an argmin procedure. In order to
do so, we use the approach introduced by [20], where, by
restricting the optimization problems solved at train time
to quadratic programs we can obtain analytical gradients
and learn θ using gradient descent. Note that, though this
approach restricts us to quadratic program optimization prob-
lems at train time, at test time we can use the learned
constraints in an off-the-shelf optimizer to solve any type
of optimization problem we wish—see the experiments sec-
tion for examples solving quadratically-constrained quadratic
programs using SNOPT [21], and mixed-integer quadratic
programs using Gurobi [22].

This approach requires inferring the mode switch times sj :
though in principle this could also be learned by gradient
descent, in practice the fact that it is a discrete decision
makes it challenging. Since the problems we are interested
in here have simple dynamics involving only a few objects,
infer switch times using a standard top-down segmentation
algorithm from the time-series analysis literature [23]. The
basic idea is to pick a regression function class that well
approximates the smooth parts of your data, but poorly
approximates the non-smooth parts. Then, greedily add a
split point s such that regressing each resulting segment will
result in the lowest overall error, and repeat until a certain
error threshold is met. Since we’re interested in learning
linear constraints, we chose linear functions as our regression
class, which in practice worked well for inferring segments
in our experiments—we stress that inferring mode switches
in more complex environments would require more general
approaches to segmentation, which is an interesting and open
problem in itself and beyond the scope of this paper. When
planning at test time, we follow [3] and set the segments to
have equal lengths.

V. WHY CHOOSE CONSTRAINTS AS A HIGH-LEVEL
REPRESENTATION?

The benefits of hierarchical representations when planning
are clear, allowing for long-horizon plans and better gen-
eralization. However, many different choices of high-level
representation are possible. In this section, we discuss the
trade-offs that come with choosing constraints as a high-level
representation, and spell out why we think this approach is
a good idea.

Pros:

Fig. 3: Our learning framework: the model receives as input
a set of expert demonstrations of a multi-step action. Then,
an off-the-shelf segmentation algorithm is used to infer the
split times between the steps in the demonstration. Next, a
differentiable procedure finds the optimal trajectory given
the initial state, the goal, the inferred split times and the
currently hypothesized constraints for each segment. Finally,
the constraint parameters are updated by comparing the
reconstructed trajectory to the expert demonstrations.

• By having the goal represented as a constraint, the same
model can learn from and generalize to many different
types of goals (see our experiments where the model
can generalize at test time to multiple goals (experiment
2), or to creating spatial relations between two objects
(experiment VI-C).)

• Constraints are easy to specify and easy to compose,
allowing us to take our learned representations and use
them in an optimization problem written in any off-
the-shelf optimizer (see experiment VI-B where we can
add obstacles at test time and the previously learned
representations can still be used solve the task.)

• Learning constraints is data efficient: a single expert
demonstration of a mode lasting T timesteps offers T
examples from which to learn the relevant constraints,
whereas for other kinds of representations that might
yield only one example (see our experiments, all in-
volving fewer than five demonstrations.) 2

Cons:

• Learning constraints is hard, as it involves inferring
parameters through an argmin operation.

• A significant part of the burden of modeling the task is
offloaded to the optimizer, which means that planning
at test time can be expensive for complex tasks.

2It’s worth noting however that the examples provided by the T timesteps
are not i.i.d. with respect to the underlying mode, as they will share spurious
correlations due to having the same initial state and goal—that’s the reason
why we are able to learn from few demonstrations but not from a single,
longer demonstration.

VI. EXPERIMENTS

We test our approach to learning mode constraints by using
the OpenAI Gym Robotics environment [2], a PyBullet [24]
environment with a Kuka robot with a WSG 50 gripper,
and a custom 2d block manipulation environment (see figure
1, top row.) For all experiments, we train the model on
expert demonstrations from a hand-coded expert policy. At
both train and test time, the model has access to the initial
state constraints fi and the goal constraints fg , and the cost
function is kept fixed throughout as the sum of squared
velocities of the gripper. Trajectories are represented as a
sequence of discrete timesteps xt, each of which contains
features such as the position and velocity for the objects
in the environment, including the gripper. The loss function
being optimized at train time is the one presented in section
IV, and at test time we plan as described in section III.

A. Multireach: Learning and generalizing a single mode

In this experiment, we first train our model on expert
trajectory demonstrations of the Reach task (see figure 1, top
left). This task consists of a single mode: that means we don’t
do any segmentation during training, and all the constraints
we learn are applied at all timesteps in the trajectory. At
test time, the model must do only low-level planning (since
the high-level plan consists of a single mode), and use the
constraints fθ it has learned for this mode to plan in an out-
of-distribution Multireach task that requires maneuvering to
reach multiple spots at different times in the trajectory (see
figure 1, bottom left).

Train: the model is trained on 5 expert demonstrations.
Each timestep’s feature space xt has dimension 6 (gripper
3d position and velocity), and the trajectories have length
20. The expert is a hand-coded policy that moves towards
the goal with constant velocity. The goal is encoded as
a constraint enforcing that the gripper be at the specified
position on the final timestep.

Test: we test the model’s learned constraints in a Multi-
reach task, which requires the gripper to do multiple reaches
to different goals in sequence. This goal is encoded as a set
of constraints enforcing that the gripper be, at evenly-spaced
timesteps, at positions sampled from the same distribution
as the train goals. Following the scoring in the Gym Reach
environment, we consider a goal to be reached if the gripper’s
distance to it is less than 5cm. The total trajectory time is
scaled linearly with the number of goals: we test the model
on 1, 2, 4, and 8 goals. We solve this optimization problem
using OptNet to obtain the full predicted trajectory x0:T and
extract from it the control variables—the gripper velocities
vt—which we use as a velocity controller in the Multireach
environment.

Results: for each number of goals (1, 2, 4, and 8), we test
the model across 100 randomly-sampled runs. Each trial’s
score is the proportion of goals reached. The results are
shown in figure 5, on the left. We see that the model that was
trained on Reach can solve Multireach with a large number of
goals, and that increasing the number of goals has almost no
effect on performance—the small decrease in score comes

from the accumulation of errors, as the controller is not
reactive.

We can also inspect the learned parameters for the con-
straint fθ (figure 4). We can see that, from the few trajectories
it observes, the model learns a representation of spatiotem-
poral continuity, i.e. xt+ vt−xt+1 = 0, across the 3 spatial
dimensions.

Fig. 4: Learned weights for the mode constraint fθ in
the Reach task, represented on a sparse basis—blue colors
represent learned positive weights on a given feature, while
red colors represent negative ones (we omit the scale of the
values here: it is meaningless as these constraints are linear
with zero bias.)

Fig. 5: Model out-of-distribution test performance on the
Multireach (experiment VI-A) , Pick (experiment VI-B, and
Pick and Push (experiment VI-C) tasks. For Multireach, we
plot performance separately for the 1 goal, 2 goals, 4 goals
and 8 goals conditions. Error bars are bootstrapped 95%
confidence intervals.

Multireach Pick Pick + Push
demonstrations 5 5 8
modes in test plan 1 5 4

TABLE I: Task-by-task breakdown of the number of demon-
strations given to the model at train time and the number of
modes in the sequence used to solve the test environment.

B. Pick: Learning and generalizing a complex mode se-
quence

In this experiment, we first train our model on expert
trajectory demonstrations of a PyBullet [24] pick and place
task (see figure 1, top center). At test time, the model is
tasked with solving the pick task in the presence of an
obstacle that precludes the kinds of trajectories observed at
train time.

Train: the model is trained on 5 expert demonstrations.
Each timestep’s feature space xt has dimension 7 (gripper
and block 3d positions and the gripper finger opening), and
the trajectories have length 50. The expert is a hand-coded
policy that moves to a grasping position, closes its fingers,
moves towards the goal, and then opens its fingers and moves
back to the starting position. The goal is encoded as two
constraints: one enforcing that the block be at a uniformly
drawn position on the right side of the table (depicted by
the green mat on figure 1) on the final timestep, and one
enforcing that the gripper be at the starting position on the
final timestep.

Test: we test the model’s learned constraints in an obstacle
pick task, which requires the gripper to maneuver around an
obstacle as its moving the block towards the goal position.
The presence of the obstacle is encoded as a set of handcoded
collision avoidance constraints between the gripper and the
obstacle and the block and the obstacle. The obstacle is
placed such that it always impedes a straight path between
the block’s starting position and the mat’s center. The goal
constraints are the same as in the train setting. Since the
sequence of modes for solving the task at train and test
time is the same, and it is rather the low-level trajectories
that change, we do not perform high-level planning at test
time and instead just use the mode sequence inferred at train
time as the high-level test plan. We solve this optimization
problem as a sequential quadratic program to obtain the
full predicted trajectory x0:T and extract from it the control
variables—the gripper positions xt and finger openings—
which we use as a position controller for the task.

Results: we test the model across 100 randomly-sampled
runs. Each trial’s score is the proportion of goals reached.
We consider a goal to be reached if the block is within the
mat, which is a 2cm-wide square (see figure 1). The results
are shown in figure 5, in the center.

C. Pick and Push: recombining modes

In this experiment, we train our model separately on expert
trajectory demonstrations of a pick task and a push task (see
figure 6, top). At test time, the model is tasked with placing
one block on top of another, in an environment where doing
so requires combining both the pick and the push modes and
navigating around an obstacle. In order to do so, the model
must successfully learn the respective mode constraints, and
be able to make a successful high-level plan at test time, that
combines these modes in a way it has not seen at train time,
in order to arrive at a feasible low-level plan.

Train: the model is trained twice on 8 expert demonstra-
tions total: once on 4 demonstrations of the pick action and
separately on 4 demonstrations of the push action (see figure
6, top). Each timestep’s feature space xt has dimension 9
(gripper and block 2d positions and velocities and a variable
that indicates when the gripper is grasping a block), and
the trajectories have length 21. The push expert is a hand-
coded policy that moves towards the block and then pushes
it towards the goal; the pick expert is a hand-coded policy
that moves to the top of the block, turns on the grasping

Pick observation Push observation

Test: Pick + Push

Fig. 6: The model observes an expert trajectory in a pick demonstration (top left) and a push demonstration (top right).
It can then plan in a new environment where achieving the goal (placing the orange block above the pink one) requires
executing both the pick and the push actions: the trajectory shown at the bottom is a plan executed by the model at test
time. Trajectories images were downsampled for illustration.

variable, and then moves the block towards the goal. The
goal is encoded as a constraint enforcing that the block be
at a uniformly drawn position on the final timestep—for the
push demonstrations, that position’s y-coordinate is always 0
and to the right of the gripper, such that the gripper is always
shown pushing the block from left to right. On this task, we
also give the model the spatiotemporal continuity constraint
for both the gripper and the block as a fixed constraint that
holds on all timesteps.

Test: we take the union of the constraints learned in the
pick and in the push train tasks and test them in a novel task,
which requires the gripper to maneuver around an obstacle
and use both the pick and the push actions to successfully
attain the goal of placing the orange block above the pink
block. The goal is encoded as a constraint enforcing that the
orange block be directly above the pink block; the presence
of the obstacle is encoded as a set of handcoded collision
avoidance constraints between the gripper and the obstacle
and the two blocks and the obstacle3. The high-level planning
is done by doing breadth-first search over the modes. The
low-level optimization problem is solved as a mixed-integer
quadratic program, with the model returning the first high-
level node in the tree that allows for a feasible low-level
trajectory. The gripper velocities and grasp control in the
predicted trajectory are used as a controller for the task.

Results: we test the model across 100 randomly-sampled
runs. Each trial’s score is the proportion of goals reached.
Akin to the Multireach environment, we consider the goal
to be reached within a 5cm tolerance of the goal constraint.
The results are shown in figure 5, in the right. We also show
display a successful test trial in figure 6, in the bottom.

VII. DISCUSSION

We showed that our model can learn, a representation
that generalizes to out-of-distribution goals (experiment VI-
A), that carves out the smooth segments of a demonstration

3In order to translate the constraints learned at train time, where
each timestep’s feature space xtraint had dimension 9, to the test en-
vironment, where each timestep’s feature space xtestt has dimension
13 (because there is an additional block), we set f testθ (xtestt , xtestt +

1) =
(
fblockAθ (xblockAt , xblockAt+1), fstationaryθ (xblockBt , xblockBt+1)

)
,

where fstationary is a constraint enforcing zero velocity for a given
block—this means that each constraint learned at train time translates into
two constraints at test time, one for each block.

and can adapt it to a novel environment (experiment VI-
B), and that can be composed to create novel high-level
plans (experiment VI-C.) It does so from less than 10
demonstrations for each environment (see Table 1)—which is
many orders of magnitude lower than most work on learning
task and motion planning skills from demonstrations (e.g.
[10], [25]), and approaches the data efficiency of methods
that deal only with the high-level aspects of skills (e.g. [8].)
This is possible due to the choice of constraints as a building-
block for high-level representations: building on the work of
[3], which established the power of hand-coded constraints
for long-horizon hierarchical planning, we showed that they
are also a great candidate for learning, being data efficient
and allowing for plans that generalize at both the high and
the low-level.

VIII. LIMITATIONS AND FUTURE WORK

A significant challenge in our framework is the neces-
sity of a segmentation procedure to infer the mode switch
times. Though our simple environments yielded reliable
segmentation results when using the standard time-series
segmentation algorithm [23], this is unlikely to hold true
when scaling to more complex scenes. Future work could
introduce segmentation into the optimization procedure and
have it be learned as well.

Another challenge is how to generalize constraints to
scenarios involving different objects. The way constraints are
represented in our framework doesn’t differentiate between
information about the kinds of kinematic relationships that
are possible (e.g. picking, pushing) and specific geometric
properties of objects (e.g. the size of the gripper or the
shape of a block): this means that if we swapped a block
for a cylinder, for instance, we’d have to learn the relevant
constraints all over again. Disentangling these two aspects
of constraints and reasoning about them separately would be
necessary for this kind of generalization.

Finally, having analytical gradients with which to learn
constraints comes at the cost of restricting the space of
optimization problems we can learn from at train time to
quadratic programs. Though this is a fairly broad class,
many interesting problems involve constraints that violate
these assumptions. Future work could try to get around this
by moving from analytical gradients to gradient estimation
methods.

REFERENCES

[1] E. Todorov, “Convex and analytically-invertible dynamics with con-
tacts and constraints: Theory and implementation in mujoco,” in 2014
IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2014, pp. 6054–6061.

[2] M. Plappert, M. Andrychowicz, A. Ray, B. McGrew, B. Baker,
G. Powell, J. Schneider, J. Tobin, M. Chociej, P. Welinder, et al.,
“Multi-goal reinforcement learning: Challenging robotics environ-
ments and request for research,” arXiv preprint arXiv:1802.09464,
2018.

[3] M. Toussaint, K. Allen, K. Smith, and J. Tenenbaum, “Differentiable
physics and stable modes for tool-use and manipulation planning,”
Proceedings of Robotics: Science and Systems, Pittsburgh, PA, 2018.

[4] L. P. Kaelbling and T. Lozano-Pérez, “Hierarchical planning in the
now,” in Workshops at the Twenty-Fourth AAAI Conference on Artifi-
cial Intelligence, 2010.

[5] M. Toussaint, “Logic-geometric programming: An optimization-based
approach to combined task and motion planning.” in IJCAI, 2015, pp.
1930–1936.

[6] N. T. Dantam, Z. K. Kingston, S. Chaudhuri, and L. E. Kavraki,
“Incremental task and motion planning: A constraint-based approach.”
in Robotics: Science and Systems, 2016, pp. 1–6.

[7] A. Jain and S. Niekum, “Efficient hierarchical robot motion
planning under uncertainty and hybrid dynamics,” arXiv preprint
arXiv:1802.04205, 2018.

[8] D.-A. Huang, S. Nair, D. Xu, Y. Zhu, A. Garg, L. Fei-Fei, S. Savarese,
and J. C. Niebles, “Neural task graphs: Generalizing to unseen tasks
from a single video demonstration,” arXiv preprint arXiv:1807.03480,
2018.

[9] V. Xia, Z. Wang, and L. P. Kaelbling, “Learning sparse relational
transition models,” arXiv:1810.11177 [cs, stat], Oct. 2018, arXiv:
1810.11177. [Online]. Available: http://arxiv.org/abs/1810.11177

[10] J. Andreas, D. Klein, and S. Levine, “Modular multitask reinforcement
learning with policy sketches,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
166–175.

[11] S. Niekum, S. Osentoski, C. G. Atkeson, and A. G. Barto, “Online
Bayesian changepoint detection for articulated motion models,” in
2015 IEEE International Conference on Robotics and Automation
(ICRA), May 2015, pp. 1468–1475.

[12] H. M. Pasula, L. S. Zettlemoyer, and L. P. Kaelbling, “Learning sym-
bolic models of stochastic domains,” Journal of Artificial Intelligence
Research, vol. 29, pp. 309–352, 2007.

[13] C. Pérez-D’Arpino and J. A. Shah, “C-learn: Learning geometric
constraints from demonstrations for multi-step manipulation in shared
autonomy,” in 2017 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 2017, pp. 4058–4065.

[14] B. Amos, I. Jimenez, J. Sacks, B. Boots, and J. Z. Kolter, “Differ-
entiable mpc for end-to-end planning and control,” in Advances in
Neural Information Processing Systems, 2018, pp. 8289–8300.

[15] I. Mordatch, E. Todorov, and Z. Popović, “Discovery of complex
behaviors through contact-invariant optimization,” ACM Transactions
on Graphics (TOG), vol. 31, no. 4, p. 43, 2012.

[16] A. Srinivas, A. Jabri, P. Abbeel, S. Levine, and C. Finn, “Universal
planning networks,” arXiv preprint arXiv:1804.00645, 2018.

[17] A. Tamar, G. Thomas, T. Zhang, S. Levine, and P. Abbeel, “Learning
from the hindsight planepisodic mpc improvement,” in 2017 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 336–343.

[18] K. Lowrey, A. Rajeswaran, S. Kakade, E. Todorov, and I. Mordatch,
“Plan online, learn offline: Efficient learning and exploration via
model-based control,” arXiv preprint arXiv:1811.01848, 2018.

[19] A. Rajeswaran, V. Kumar, A. Gupta, G. Vezzani, J. Schulman,
E. Todorov, and S. Levine, “Learning complex dexterous manipulation
with deep reinforcement learning and demonstrations,” arXiv preprint
arXiv:1709.10087, 2017.

[20] B. Amos and J. Z. Kolter, “Optnet: Differentiable optimization as a
layer in neural networks,” in Proceedings of the 34th International
Conference on Machine Learning-Volume 70. JMLR. org, 2017, pp.
136–145.

[21] P. E. Gill, W. Murray, and M. A. Saunders, “Snopt: An sqp algorithm
for large-scale constrained optimization,” SIAM review, vol. 47, no. 1,
pp. 99–131, 2005.

[22] G. Optimization, “Inc.,gurobi optimizer reference manual, 2015,”
2014.

[23] E. Keogh, S. Chu, D. Hart, and M. Pazzani, “Segmenting time series: A
survey and novel approach,” in Data mining in time series databases.
World Scientific, 2004, pp. 1–21.

[24] E. Coumans and Y. Bai, “Pybullet, a python module for physics sim-
ulation for games, robotics and machine learning,” GitHub repository,
2016.

[25] M. B. Chang, A. Gupta, S. Levine, and T. L. Griffiths, “Automatically
composing representation transformations as a means for generaliza-
tion,” arXiv preprint arXiv:1807.04640, 2018.

